オックスフォード・インストゥルメンツー事業部ページ
拡張

薄膜・コーティングのためのAFM

薄膜の原子間力顕微鏡(AFM)像

薄膜やコーティングは、食品包装から太陽光発電まで、あらゆる面で重要な役割を果たしています。そのような多様なニーズを満たすために、それらはあらゆる分野の材料から作られ、また堆積・自己組織化・ゾル-ゲル法などの多数のプロセスによって作製されます。原子間力顕微鏡は、薄膜やコーティングの特性を評価するための強力なツールであり、性能評価に必要とされる重要な情報を提供します。比類のない空間分解能でラフネスやテクスチャを3次元で定量化し、電気的・磁気的・機械的特性など、ナノスケールの機能を測定します。サブナノメートルからマイクロメートルの分解能で、フィルムの特性を評価するためには、固有のディメンジョン(厚さ・粒径・ドメインサイズなど)が重要になります。さらに、これらの長さスケールで機能特性を同時に測定する能力は、対象のアプリケーションに対して、薄膜エンジニアリングの重要な側面となっています。AFMは、薄膜成長過程の開発・最適化・モニタリング、さらに設計経路の合理化における重要な情報を提供して、求められる機能特性を実現します。

AFMに関する技術的なお問い合わせ

メトロロジー

  • 表面粗さ
  • 均一性、多分散性
  • モルフォロジー
  • 粒子解析
  • 膜厚

機械特性

  • 剛性,ヤング率 (フォースカーブ,フォースマッピング,AM-FM,コンタクト共振)
  • 弾性率,損失弾性率,粘弾性ロスタンジェント (AM-FM,コンタクト共振,ロスタンジェントイメージング)
  • エネルギー散逸 (AM-FM,コンタクト共振,ロスタンジェントイメージング,BE)

トライボロジー特性

  • 摩擦 (LFM)
  • 凝着 (フォースカーブ,FFM)
  • 摩耗 (LFM)

電気特性

  • 導電率・誘電率 (sMIM, CAFM)
  • 表面電位 (KPFM)
  • 蓄積電荷 (EFM)
  • I-V プロファイル (CAFM,フォースマッピング)
  • 絶縁破壊 (nanoTDDB)

圧電特性

  • 電気機械的応答 (PFM)
  • ドメイン極性 (PFM)
  • ピエゾ‐ヒステリシス (PFM)

磁気特性

  • 磁気力勾配 (MFM)
  • 磁気ヒステリシス (MFM, VFM)
  • 磁気電気カップリング (MFM, PFM, VFM)

熱特性

  • 熱伝導性 (SThM)
  • 熱機械的応答 (SThM)
  • 相転移 (SThM)

一般的な用途

  • バッテリーとエネルギー貯蔵
  • 生体適合性
  • 腐食と防汚
  • データストレージ
  • 強誘電体と圧電体
  • 光学
  • 太陽光発電・光起電
  • 半導体およびマイクロエレクトロニクス産業
  • MEMS(微小電気機械システム)を含むセンサーとアクチュエータ
  • 生体組織工学および幹細胞研究
  • トライボロジー

一般的な薄膜析出プロセス

  • ALD (atomic layer deposition; 原子層堆積法)
  • CVD (chemical vapor deposition; 化学蒸着法)
  • MBE (molecular beam epitaxy; 分子線エピタキシ法)
  • PLD (pulsed laser deposition; パルスレーザー堆積法)
  • PVD (physical vapor deposition; 物理蒸着法)
  • 自己組織化 (Self assembly)
  • スパッタリング
  • スピンキャスティング
  • 加熱蒸散

画像をクリックするとダウンロードできます。

"Probing the ionic and electrochemical phenomena during resistive switching of NiO thin films," W. Lu, J. Xiao, L.-M. Wong, S. Wang, and K. Zeng, ACS Appl. Mater. Interfaces 10, 8092 (2018). https://doi.org/10.1021/acsami.7b16188

"Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic phase," S. M. Vorpahl, R. Giridharagopal, G. E. Eperon, I. M. Hermes, S. A. L. Weber, and D. S. Ginger, ACS Appl. Energy Mater. 1, 1534 (2018). https://doi.org/10.1021/acsaem.7b00330https://doi.org/10.1021/acsaem.7b00330

"Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing," C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, Nano Energy 40, 195 (2017). https://doi.org/10.1016/j.nanoen.2017.08.013

"Flexible and highly sensitive pressure sensors based on bionic hierarchical structures," M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Adv. Funct. Mater. 27, 1606066 (2017). https://doi.org/10.1002/adfm.201606066

"Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects," T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, and D. Damjanovic, Nat. Mater. 16, 322 (2017). https://doi.org/10.1038/nmat4799

"Stimuli-responsive weak polyelectrolyte multilayer films: A thin film platform for self triggered multi-drug delivery," S. Anandhakumar, P. Gokul, and A. M. Raichur, Mater. Sci. Eng. C 58, 622 (2016). https://doi.org/10.1016/j.msec.2015.08.039

"Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films," J. Chen, Z. Tang, Y. Bai, and S. Zhao, J. Alloys Compd. 675, 257 (2016). https://doi.org/10.1016/j.jallcom.2016.03.119

"Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/c6ee00413j

"An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte," J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, Electrochim. Acta 152, 161 (2015). https://doi.org/10.1016/j.electacta.2014.11.091

"Molecular-orientation-induced rapid roughening and morphology transition in organic semiconductor thin-film growth," J. Yang, S. Yim, and T. S. Jones, Sci. Rep. 5, 9441 (2015). https://doi.org/10.1038/srep09441

"Quantifying charge carrier concentration in ZnO thin films by scanning Kelvin probe microscopy," C. Maragliano, S. Lilliu, M. S. Dahlem, M. Chiesa, T. Souier, and M. Stefancich, Sci. Rep. 4, 4203 (2014). https://doi.org/10.1038/srep04203

"Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion," T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, Mater. Chem. Phys. 143, 668 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.052

"Stratified polymer grafts: Synthesis and characterization of layered 'brush' and 'gel' structures," A. Li, S. N. Ramakrishna, P. C. Nalam, E. M. Benetti, and N. D. Spencer, Adv. Mater. Interfaces 1 1300007 (2014). https://doi.org/10.1002/admi.201300007

"Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films," W. Li, K. H. Hendriks, W. S. C. Roelofs, Y. Kim, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 25, 3182 (2013). https://doi.org/10.1002/adma.201300017

"Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy," G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, Nanoscale 4, 3218 (2012). https://doi.org/10.1039/c2nr00064d

"Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films," A. R. Damodaran, S. Lee, J. Karthik, S. MacLaren, and L. W. Martin, Phys. Rev. B 85, 024113 (2012). https://doi.org/10.1103/physrevb.85.024113

"V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries," Y. Liu, M. Clark, Q. Zhang, D. Yu, D. Liu, J. Liu, and G. Cao, Adv. Energy Mater. 1, 194 (2011). https://doi.org/10.1002/aenm.201000037

"Photoinduced degradation studies of organic solar cell materials using Kelvin probe force and conductive scanning force microscopy," E. Sengupta, A. L. Domanski, S. A. L. Weber, M. B. Untch, H.-J. Butt, T. Sauermann, H. J. Egelhaaf, and R. Berger, J. Phys. Chem. C 115, 19994 (2011). https://doi.org/10.1021/jp2048713

"Nanomechanical properties of thin films of type I collagen fibrils," K.-H. Chung, K. Bhadriraju, T. A. Spurlin, R. F. Cook, and A. L. Plant, Langmuir 26, 3629 (2010). https://doi.org/10.1021/la903073v

"Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677

"Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion," P. A. George, B. C. Donose, and J. J. Cooper-White, Biomaterials 30, 2449 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.012

"Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films," A. B. South, R. E. Whitmire, A. J. Garcia, and L. A. Lyon, ACS Appl. Mater. Interfaces 1, 2747 (2009). https://doi.org/10.1021/am9005435

"Nanomechanical properties of polymer thin films measured by force-distance curves," B. Cappella and D. Silbernagl, Thin Solid Films 516, 1952 (2008). https://doi.org/10.1016/j.tsf.2007.09.042

"A reversible wet/dry adhesive inspired by mussels and geckos," H. Lee, B. P. Lee, and P B. Messersmith, Nature 448, 338 (2007). https://doi.org/10.1038/nature05968

"Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study," I. S. Forbes and J. I. Wilson, Thin Solid Films 420, 508 (2002). https://doi.org/10.1016/S0040-6090(02)00854-4