オックスフォード・インストゥルメンツツの一部
拡張

エネルギー貯蔵とバッテリー研究のためのAFM

リチウム電池電極の原子間力顕微鏡 (AFM, atomic force microscope) 像

原子間力顕微鏡 (AFM) は、局所的な電気化学プロセスをナノスケールで調べることができるため、エネルギー貯蔵研究分野の特性評価ツールとして最適です。リチウムイオン電池や電気二重層コンデンサから燃料電池に至るまで、貯蔵デバイスに使われる次世代材料のエネルギー密度や寿命を向上させる目的で、さまざまなAFMテクニックが広く活用されています。ナノ構造がデバイスの性能や信頼性に及ぼす影響について調べるツールとして、AFMが選ばれるのは自然なことだと思われますが、その他にも、AFMは局所的なイオン輸送や反応性の研究にも活用されています。

AFMに関する技術的なお問い合わせ
  • 電気化学ストレイン顕微鏡 (ESM, Electrochemical Strain Microscopy) により、イオン輸送、インターカレーションのキネティクスおよび反応性の研究が可能
  • 電気化学セルによる酸化還元反応のin-situ研究(Cypher ESおよびMFP-3D ファミリー AFMで利用可能)
  • 高い力感度により、電極/電解質界面での電気二重層のイメージングが可能
  • ナノ構造に対する高分解能での特性評価により、デバイス性能の最適化が可能
  • ターンキーグローブボックスソリューションの利用が可能
  • リチウムイオン電池
  • 燃料電池
  • 電気二重層コンデンサ
  • イオン液体の電気二重層
  • 電極およびセパレータ材料
  • 電極ナノ構造
  • 電気化学
  • 充放電サイクルが及ぼす形態の影響

下のリストより技術資料(英文)のダウンロードをご利用いただけます。
日本語版をご希望の場合にはこちらからご連絡ください。

"Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors," P. Buragohain, C. Richter, T. Schenk, H. Lu, T. Mikolajick, U. Schroeder, and A. Gruverman, Appl. Phys. Lett. 112, 222901 (2018). https://doi.org/10.1063/1.5030562

"Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity," S. Duan, H. Jin, J. Yu, E. N. Esfahani, B. Yang, J. Liu, Y. Ren, Y. Chen, L. Lu, X. Tian, S. Hou, and J. Li, Nano Energy 51, 19 (2018). https://doi.org/10.1016/j.nanoen.2018.06.050

"Stamping of flexible, coplanar micro‐supercapacitors using MXene inks," C. Zhang, M. P. Kremer, A. Seral‐Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, and V. Nicolosi, Adv. Func. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506

"Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films," Y. Hao, X. Wang, K. Bi, J, Zhang, Y. Huang, L. Wu, P. Zhao, K. Xu, M. Lei, and L. Li, Nano Energy 31, 49 (2017). https://doi.org/10.1016/j.nanoen.2016.11.008

"Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions," M. Ricci, W. Trewby, C. Cafolla, and K. Voïtchovsky, Sci. Rep. 7, 43234 (2017). https://doi.org/10.1038/srep43234

"Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures," C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki, Z. Lu, J. Y. Howe, D. Perovic, X. Sun, C. V. Singh, Y. Sun, and T. Filleter, Nanoscale 9, 11678 (2017). https://doi.org/10.1039/c7nr03049e

"Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes," J. Come, Y. Xie, M. Naguib, S. Jesse, S. V. Kalinin, Y. Gogotsi, P. R. C. Kent, and N. Balke, Adv. Energy Mater. 6, 1502290 (2016). https://doi.org/10.1002/aenm.201502290

"Influence of polar organic solvents in an ionic liquid containing lithium bis(fluorosulfonyl)amide: Effect on the cation–anion interaction, lithium ion battery performance, and solid electrolyte interphase," A. Lahiri, G. Li, M. Olschewski, and F. Endres, ACS Appl. Mater. Interfaces 8, 34143 (2016). https://doi.org/10.1021/acsami.6b12751

"Topological defects in electric double layers of ionic liquids at carbon interfaces," J. M. Black, M. B. Okatan, G. Feng, P. T. Cummings, S. V. Kalinin, and N. Balke, Nano Energy 15, 737 (2015). https://doi.org/10.1016/j.nanoen.2015.05.037

"Nanostructure of the ionic liquid-graphite Stern layer," A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, and R. Atkin, ACS Nano 9, 7608 (2015). https://doi.org/10.1021/acsnano.5b02921

"An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte," J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, Electrochim. Acta 152, 161 (2015). https://doi.org/10.1016/j.electacta.2014.11.091

"Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications," X. Sun, T. Souier, M. Chiesa, and A. Vassallo, Electrochim. Acta 148, 104 (2014). http://dx.doi.org/10.1016/j.electacta.2014.10.003

"Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications," S. S. Parizi, A. Mellinger, and G. Caruntu, ACS Appl. Mater. Interfaces 6, 17506 (2014). https://doi.org/10.1021/am502547h

"In situ tracking of the nanoscale expansion of porous carbon electrodes," T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, Energy Environ. Sci. 6, 225 (2013). https://doi.org/10.1039/c2ee23707e

"Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite," J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, Nano Lett. 13, 5954 (2013). https://doi.org/10.1021/nl4031083

"Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments," S. S. Nonnenmann and D. A. Bonnell, Rev. Sci. Instrum. 84, 073707 (2013). https://doi.org/10.1063/1.4813317

"Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques," J. Zhu, L. Lu, and K. Zeng, ACS Nano 7, 1666 (2013). https://doi.org/10.1021/nn305648j

"Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes," H. Gao, F. Xiao, C. B. Ching, and H. Duan, ACS Appl. Mater. Interfaces 4, 7020 (2012). https://doi.org/10.1021/am302280b

"Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage," W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, Chem. Mater. 24, 2382 (2012). https://doi.org/10.1021/cm3011474

"Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution," S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S. V. Kalinin, J. Electrochem. Soc. 158, A982 (2011). https://doi.org/10.1149/1.3604759

"Measuring oxygen reduction/evolution reactions on the nanoscale," A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Nat. Chem. 3, 707 (2011). https://doi.org/10.1038/nchem.1112

"In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance," B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang, J. Alloys Compd. 509, 7778 (2011). https://doi.org/10.1016/j.jallcom.2011.04.152

"The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," I. Sirés, C. Low, C. P. de León, and F. Walsh, Electrochim. Acta 55, 2163 (2010). https://doi.org/10.1016/j.electacta.2009.11.051

"Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors," B. Wang, J. Park, C. Wang, H. Ahn, and G. Wang, Electrochim. Acta 55, 6812 (2010). https://doi.org/10.1016/j.electacta.2010.05.086