AFMシステム
アクセサリ
アプリケーション
お問い合わせ
キャンペーン
「AFMテストサンプル」 プレゼント
光起電(PV; photovoltaic)、熱電(TE; thermoelectric)ならびに関連する材料・デバイスが急速に発展し、さまざまな分野に分岐しています。その内訳は、PVポリマーや、既存の半導体をベースとしたPVデバイス、そして今ではペロブスカイトPV材料に至ります。低コストの再生可能エネルギーがふんだんにあるような未来の実現は、すぐ手の届くところにありますが、次世代太陽光発電(PV)材料の特性評価の改善が必要となります。この取り組みに欠かせないのが、原子間力顕微鏡(AFM)の高分解能イメージングの性能です。アサイラム・リサーチの原子間力顕微鏡は、透明材料、不透明材料、トップおよびボトムからの照明、ユーザー提供の外部光源の使用など、開発のあらゆる段階において、主要なPV材料・デバイスの全タイプに対応したプラットフォームを提供します。アサイラムの電気的特性評価ツールは、弊社が提供する幅広いプラットフォーム組み合わせ、さらに弊社の幅広いソフトウェア・ハードウェアのカスタマイズツールを駆使することで、AFM業界で他に類を見ないものとなっています。
AFMに関する技術的なお問い合わせ"Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin probe force microscopy," L. A. Renna, Y. Liu, T. P. Russell, M. Bag, and D. Venkataraman, Mater. Lett. 217, 308 (2018). https://doi.org/10.1016/j.matlet.2018.01.106
"Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic phase," S. M. Vorpahl, R. Giridharagopal, G. E. Eperon, I. M. Hermes, S. A. L. Weber, and D. S. Ginger, ACS Appl. Energy Mater. 1, 1534 (2018). https://doi.org/10.1021/acsaem.7b00330
"High performance perovskite solar cells fabricated under high relative humidity conditions," J. Ciro, R. Betancur, S. Mesa, F. Jaramillo, Sol. Energy Mater Sol. Cells 163, 38 (2017). https://doi.org/10.1016/j.solmat.2017.01.004
"Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells," J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, and M. S. Leite, Nano Lett. 17, 2554 (2017). https://doi.org/10.1021/acs.nanolett.7b00289
"Morphology controls the thermoelectric power factor of a doped semiconducting polymer," S. N. Patel, A. M. Glaudell, K. A. Peterson, E. M. Thomas, K. A. O'Hara, E. Lim, and Michael L. Chabinyc, Sci. Adv. 3, e1700434 (2017). https://doi.org/10.1126/sciadv.1700434
"Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission," L. N. Quan, Y. Zhao, F. P. G. de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim, and E. H. Sargent, Nano Lett. 17, 3701 (2017). https://doi.org/10.1021/acs.nanolett.7b00976
"Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale," Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016). https://doi.org/10.1021/acs.nanolett.5b04157
"Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films," Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/c6ee00413j
"High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer," J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, Adv. Mater. 27, 695 (2015). https://doi.org/10.1002/adma.201404189
"Polymer homo-tandem solar cells with best efficiency of 11.3%," H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, Adv. Mater. 27, 1767 (2015). https://doi.org/10.1002/adma.201404220
"Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell," V. W. Bergmann, S. A. L. Weber, F. J. Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, and R. Berger, Nat. Commun. 5, 5001 (2014). https://doi.org/10.1038/ncomms6001
"Solvent‐polarity‐induced active layer morphology control in crystalline diketopyrrolopyrrole‐based low band gap polymer photovoltaics," S. Ferdous, F. Liu, D. Wang, and T.P. Russell, Adv. Energy Mater. 4, 1300834 (2014). https://doi.org/10.1002/aenm.201300834
"Ternary blend polymer solar cells with enhanced power conversion efficiency," L. Lu, T. Xu, W. Chen, E. S. Landry, and L. Yu, Nat. Photonics 8, 716 (2014). https://doi.org/10.1038/nphoton.2014.172
"The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells," K. Sun, Z. Xiao, E. Hanssen, M. F. G. Klein, H. H. Dam, M. Pfaff, D. Gerthsen, W. W. H. Wong, and D. J. Jones, J. Mater. Chem. A 2, 9048 (2014). https://doi.org/10.1039/c4Ta01125b
"Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly(thieno)thiophene," A. Gasperini and K. Sivula, Macromolecules 46, 9349 (2013). https://doi.org/10.1021/ma402027v
"Understanding the morphology of PTB7:PCBM blends in organic photovoltaics," F. Liu, W. Zhao, J. R. Tumbleston, C. Wang, Y. Gu, D. Wang, A. L. Briseno, H. Ade, and T. P. Russell, Adv. Energy Mater. 4, 1301377 (2013). https://doi.org/10.1002/aenm.201301377
"Boron subphthalocyanine chloride as an electron acceptor for high‐voltage fullerene‐free organic photovoltaics," N. Beaumont, S. W. Cho, P. Sullivan, D. Newby, K. E. Smith, and T. Jones, Adv. Funct. Mater. 22, 561 (2012). https://doi.org/10.1002/adfm.201101782
"Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677
"Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells," J. H. Choi, K.-I. Son, T. Kim, K. Kim, K. Ohkubo, and S. Fukuzumi, J. Mater. Chem. 20, 475 (2010). https://doi.org/10.1039/b916597e
"Nanocrystalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers," F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie, J.-F. Li, G. Cao, R. Proksch, and J. Li, J. Phys. Chem. C 114, 22038 (2010). https://doi.org/10.1021/jp107488k
"Low band gap polymers based on benzo[1,2-b:4,5-b']dithiophene: Rational design of polymers leads to high photovoltaic performance," S. C. Price, A. C. Stuart, and W. You, Macromolecules 43, 4609 (2010). https://doi.org/10.1021/ma100051v
"Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, J. Am. Chem. Soc. 131, 7799 (2009). https://doi.org/10.1021/ja901545q
"Influence of pulsed laser deposition rate on the microstructure and thermoelectric properties of Ca3Co4O9 thin films," T. Sun, J. Ma, Q. Yan, Y. Huang, J. Wang, and H. Hng, J. Cryst. Growth 311, 4123 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.044