オックスフォード・インストゥルメンツー事業部ページ
拡張

ポリマーサイエンス研究のためのAFM

ポリマーブレンドの弾性率マップ

ポリマーは、日常生活のいたるところで利用されており、多くの材料研究のテーマとなっています。ポリマーの物性は多様であり、原子間力顕微鏡(AFM)はさまざまなレベルの研究において、非常に優れたツールとなります。高分子膜の精密な形状測定はもちろんのこと、幅広いAFMのテクニックがアサイラム・リサーチの装置で利用できます。結晶中の分子鎖配列や、ドメインの弾性率・導電性など多岐にわたり、ポリマー物性の多様な研究が可能となります。

AFMに関する技術的なお問い合わせ

機能・性能

  • 表面の形態および粗さの測定
  • 粘弾性(AM-FMおよびCR-DART)を含む、定量的なナノメカニカル特性(ナノ力学特性)
  • 結晶化と融解のプロセスを観察するための高速イメージング
  • サンプルの加熱・冷却制御
  • 光導電性や電気化学歪みといった電気的測定
  • サンプル周囲の気体の種類や湿度の環境制御
  • 熱分析(SThM)
  • リソグラフィー内蔵ツール
  • 1分子フォーススペクトロスコピー実験

一般的な用途

  • ポリマーブレンドや高分子複合材料のナノメカニカル(弾性率・粘弾性)特性
  • 市販包装材の品質試験
  • 層の厚さや均一性の測定
  • 材料の歪み試験
  • 有機エレクトロニクス ー 有機太陽電池の光導電性
  • 単鎖ポリマーの引伸ばし
  • 熱相転移 ー 融解と結晶化

画像をクリックするとダウンロードできます。

"Persistence length of poly(vinyl amine): Quantitative image analysis versus single molecule force response," S. Kozhuharov, M. Radiom, P. Maroni, and M. Borkovec, Macromolecules 51, 3632 (2018). https://doi.org/10.1021/acs.macromol.8b00834

"One‐step synthesis and enhanced thermoelectric properties of polymer‐quantum dot composite films," W. Shi, S. Qu, H. Chen, Y. Chen, Q. Yao, and L. Chen, Angew. Chem. Int. Ed. 57, 8037 (2018). https://doi.org/10.1002/anie.201802681

"原子間力顕微鏡を利用したナノ力学物性測定技術,"  谷口 幸範,  日本ゴム協会誌,  2017 年 90 巻 12 号 p. 577-582. https://doi.org/10.2324/gomu.90.577

"Morphological explanation of high tear resistance of EPDM/NR rubber blends," C. Goegelein, H. J. H. Beelen, and M. van Duinc, Soft Matter 13, 4241 (2017). https://doi.org/10.1039/c7sm0264e

"Real-time atomic force microscopy imaging of block copolymer directed self assembly," J. Raybin, J. Ren, X. Chen, R. Gronheid, P. F. Nealey, and S. J. Sibener, Nano Lett. 17, 7717 (2017). https://doi.org/10.1021/acs.nanolett.7b03881

"Stem‐cell clinging by a thread: AFM measure of polymer‐brush lateral deformation," M. K. Gunnewiek, S. N. Ramakrishna, A. Di Luca, G. J. Vancso, L. Moroni, and E. M. Benetti, Adv. Mater. Interfaces 3, 1500456 (2016). https://doi.org/10.1002/admi.201500456

"Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy," H. K. Nguyen, M. Ito, and K. Nakajima, Jpn. J. Appl. Phys. 55, 08NB06 (2016). https://doi.org/10.7567/jjap.55.08nb06

"Bimodal poly(ethylene-cb-propylene) comb block copolymers from serial reactors: Synthesis and applications as processability additives and blend compatibilizers," A. H. Tsou, C. R. López-Barrón, P. Jiang, D. J. Crowther, and Y. Zeng, Polymer 104, 72e82 (2016). http://dx.doi.org/10.1016/j.polymer.2016.09.088

"Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy," P. C. Nalam, N. N. Gosvami, M. A. Caporizzo, R. J. Composto, and R. W. Carpick, Soft Matter 11, 8165 (2015). https://doi.org/10.1039/c5sm01143d

"Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers," J. Roh, D. Roy, W. Lee, A. Gergely, J. Puskas, and C. Roland, Polymer 56, 280 (2015). https://doi.org/10.1016/j.polymer.2014.11.015

"Fast nanomechanical spectroscopy of soft matter," E. T. Herruzo, A. P. Perrino, and R. Garcia, Nat. Commun. 5, 3126 (2014). https://doi.org/10.1038/ncomms4126

"Measuring the loss tangent of polymer materials with atomic force microscopy based methods," D. G. Yablon, J. Grabowski, and I. Chakraborty, Meas. Sci. Technol. 25, 055402 (2014). https://doi.org/10.1088/0957-0233/25/5/055402

"Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers," A. Gelmi, M. J. Higgins, and G. G. Wallace, Small 9, 393 (2013). https://doi.org/10.1002/smll.201201686

“Improved electrical and flow properties of conductive polyolefin blends: Modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene–propylene copolymer,” T. Gkourmpis, C. Svanberg, S. K. Kaliappan, W. Schaffer, M. Obadal, G. Kandioller, and D. Tranchida, Eur. Polym. J. 49, 1975 (2013). https://doi.org/10.1016/j.eurpolymj.2013.03.003

"Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM)," C. A. Grant, A. Alfouzan, T. Gough, P. C. Twigg, and P. D. Coates, Micron 44, 174 (2013). https://doi.org/10.1016/j.micron.2012.06.004

"Measuring the interaction between ions, biopolymers and interfaces — one polymer at a time," S. Kienle, T. Pirzer, S. Krysiak, M. Geisler, and T. Hugel, Faraday Discuss. 160, 329 (2013). https://doi.org/10.1039/c2fd20069d

"Poly (acrylamide) films at the solvent-induced glass transition: Adhesion, tribology, and the influence of crosslinking," A. Li, S. N. Ramakrishna, E. S. Kooij, R. M. Espinosa-Marzal, and N. D. Spencer, Soft Matter 8, 9092 (2012). https://doi.org/10.1039/c2sm26222c

"Signature of hydrophobic hydration in a single polymer," I. T. S. Li and G. C. Walker, Proc. Natl. Acad. Sci. U.S.A./em> 108, 16527 (2011). https://doi.org/10.1073/pnas.1105450108

“High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers,” P. Sharma, T. J. Reece, S. Ducharme, and A. Gruverman, Nano Lett. 11, 1970 (2011). https://doi.org/10.1021/nl200221z

"Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives," C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, Adv. Mater. 22, E63 (2010). https://doi.org/10.1002/adma.200903677

"Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion," P. A. George, B. C. Donose, and J. J. Cooper-White, Biomaterials 30, 2449 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.012

"Nanoscale thermal–mechanical probe determination of 'softening transitions' in thin polymer films," J. Zhou, B. Berry, J. F. Douglas, A. Karim, C. R. Snyder, and C. Soles, Nanotechnology 19, 495703 (2008). https://doi.org/10.1088/0957-4484/19/49/495703

"Nanoindentation of shape memory polymer networks," E. Wornyo, K. Gall, F. Yang, and W. P. King, Polymer 48, 3213 (2007). https://doi.org/10.1016/j.polymer.2007.03.029

"Time-resolved electrostatic force microscopy of polymer solar cells," D. C. Coffey and D. S. Ginger, Nat. Mater. 5, 735 (2006). https://doi.org/10.1038/nmat1712

"Functional polymers: scanning force microscopy insights," P. Samorì, M. Surin, V. Palermo, R. Lazzaroni, and P. Leclère, Phys. Chem. Chem. Phys. 8, 3927 (2006). https://doi.org/10.1039/b607502a

"Using AFM force–distance curves to study the glass-to-rubber transition of amorphous polymers and their elastic–plastic properties as a function of temperature," B. Cappella, S. K. Kaliappan, and H. Sturm, Macromolecules 38, 1874 (2005). https://doi.org/10.1021/ma040135