オックスフォード・インストゥルメンツー事業部ページ
拡張

バイオマテリアル研究のためのAFM

冠状動脈ステント構造のAFM像

原子間力顕微鏡 (AFM) を使用することで、生体材料のトポグラフィや機械特性の評価が可能となります。AFMは、表面粗さや微細構造を、組成や工程変数の関数として正確に測定することができます。また生体材料を、in vitro試験後や外植後に検査して、表面形状の変化を評価することもできます。生体材料の剛性、弾性率、散逸を測定するために多彩なAFMテクニックが適用できます。

AFMに関する技術的なお問い合わせ
  • 表面形態・表面粗さの測定
  • 材料特性(弾性率、損失弾性率、硬さ)の測定
  • 液体(生体適合性に関するものなど)への、ばく露中、ばく露後の表面の変化を測定
  • インプラント
  • 薬剤コーティング(ステント、カテーテルなど)
  • 防汚コーティング(カテーテル、インプラント、バイオセンサーなど)
  • バイオミネラリゼーション研究
  • ティシュエンジニアリング(組織工学)・スキャフォールド(足場)エンジニアリング

画像をクリックするとダウンロードできます。

"Silk protein nanowires patterned using electron beam lithography," R. K. Pal, and V. K. Yadavalli, Nanotechnology 29, 335301 (2018). https://doi.org/10.1088/1361-6528/aac855

"Type I collagen from jellyfish Catostylus mosaicus for biomaterial applications," Z. Rastian, S. Pütz, Y. J. Wang, S. Kumar, F. Fleissner, T. Weidner, and S. H. Parekh, ACS Biomater. Sci. Eng. 4, 2115 (2018). https://doi.org/10.1021/acsbiomaterials.7b00979

"Mutable polyelectrolyte tube arrays: mesoscale modeling and lateral force microscopy," S. W. Cranford, L. Han, C. Ortiz, and M. J. Buehler, Soft Matter 13, 5543 (2017). https://doi.org/10.1039/c7sm00864c

"Engineered phage nanofibers induce angiogenesis," S. Y. Yoo, K. R. Shrestha, S. N. Jeong, J. I. Kang, and S. W. Lee, Nanoscale 9, 17109 (2017). https://doi.org/10.1039/c7nr03332j

"3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells," X. Zhou, M. Nowicki, H. Cui, W. Zhu, X. Fang, S. Miao, S. J. Lee, M. Keidar, and L. G. Zhang, Carbon 116, 615 (2017). https://doi.org/10.1016/j.carbon.2017.02.049

"The structure and mechanical properties of articular cartilage are highly resilient towards transient dehydration," K. Boettcher, S. Kienle, J. Nachtsheim, R. Burgkart, T. Hugel, and O. Lieleg, Acta Biomater. 29, 180 (2016). https://doi.org/10.1016/j.actbio.2015.09.034

"Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces," Y. Jiang, J. L. Carvalho-de-Souza, R. C. Wong, Z. Luo, D. Isheim, X. Zuo, A. W. Nicholls, I. W. Jung, J. Yue, D. J. Liu, and Y. Wang, Nat. Mater. 15, 1023 (2016). https://doi.org/10.1038/nmat4673

"Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing," C. Li, B. Hotz, S. Ling, J. Guo, D. S. Haas, B. Marelli, F. Omenetto, S. J. Lin, and D. L. Kaplan, Biomaterials 110, 24 (2016). https://doi.org/10.1016/j.biomaterials.2016.09.014

"Modulation of protein fouling and interfacial properties at carbon surfaces via immobilization of glycans using aryldiazonium chemistry," F. Zen, M. D. Angione, J. A. Behan, R. J. Cullen, T. Duff, J. M. Vasconcelos, E. M. Scanlan, and P. E. Colavita, Sci. Rep. 6, 24840 (2016). https://doi.org/10.1038/srep24840

"Nanomechanics of cells and biomaterials studied by atomic force microscopy," J. I. Kilpatrick, I. Revenko, and B. J. Rodriguez, Adv. Healthcare Mater. 4, 2456 (2015). https://doi.org/10.1002/adhm.201500229

"The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors," J. Song, H. Gao, G. Zhu, X. Cao, X. Shi, and Y. Wang, Carbon 95, 1039 (2015). https://doi.org/10.1016/j.carbon.2015.09.011

"Application of layer-by-layer coatings to tissue scaffolds—development of an angiogenic biomaterial," C. D. Easton, A. J. Bullock, G. Gigliobianco, S. L. McArthur, and S. MacNeil, J. Mater. Chem. B 2, 5558 (2014). https://doi.org/10.1039/c4tb00448e

"Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials," S. Marchesan, C. D. Easton, K. E. Styan, L. J. Waddington, F. Kushkaki, L. Goodall, K. M. McLean, J. S. Forsythe, and P. G. Hartley, Nanoscale 6, 5172 (2014). https://doi.org/10.1039/c3nr06752a

"Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level," O. L. Katsamenis, H. M. Chong, O. G. Andriotis, and P. J. Thurner, J. Mech. Behav. Biomed. Mater. 17, 152 (2013). https://doi.org/10.1016/j.jmbbm.2012.08.016

"Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation," S. E. Campbell, V. L. Ferguson, and D. C. Hurley, Acta Biomater. 8, 4389 (2012). https://doi.org/10.1016/j.actbio.2012.07.042

"Dilatational band formation in bone," A. A. Poundarik, T. Diab, G. E. Sroga, A. Ural, A. L. Boskey, C. M. Gundberg, and D. Vashishth, Proc. Natl. Acad. Sci. U.S.A. 109, 19178 (2012). https://doi.org/10.1073/pnas.1201513109

"Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage," R. E. Wilusz, L. E. DeFrate, and F. Guilak, J. Royal Soc. Interface 9, 2997 (2012). https://doi.org/10.1098/rsif.2012.0314

"Diameter of titanium nanotubes influences anti-bacterial efficacy," B. Ercan, E. Taylor, E. Alpaslan, and T. J. Webster, Nanotechnology 22, 295102 (2011). https://doi.org/10.1088/0957-4484/22/29/295102

"Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants," Y.-T. Sul, D. H. Kwon, B.-S. Kang, S.-J. Oh, and C. Johansson, Clin. Oral Implants Res. 24, 8 (2011). https://doi.org/10.1111/j.1600-0501.2011.02355.x

"Physical surface and electromechanical properties of doped polypyrrole biomaterials," A. Gelmi, M. J. Higgins, and G. G. Wallace, Biomaterials 31, 1974 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.040

"Autonomic self‐healing of hydrogel thin films," A. B. South and L. A. Lyon, Angew. Chem. Int. Ed. 49, 767 (2010). https://doi.org/10.1002/anie.200906040

"Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance," S. F. Lamolle, M. Monjo, S. P. Lyngstadaas, J. E. Ellingsen, and H J. Haugen, J. Biomed. Mater. Res. 88A, 581 (2009). https://doi.org/10.1002/jbm.a.31898

"Hydride formation on titanium surfaces by cathodic polarization," K. Videm, S. Lamolle, M. Monjo, J. E. Ellingsen, S. P. Lyngstadaas, and H J. Haugen, Appl. Surf. Sci. 255, 3011 (2008). https://doi.org/10.1016/j.apsusc.2008.08.090

"Protective coatings on extensible biofibres," N. Holten-Andersen, G. E. Fantner, S. Hohlbauch, J. H. Waite, and F. W. Zok, Nat. Mater. 6, 669 (2007). https://doi.org/10.1038/nmat1956

"Nanoscale heterogeneity promotes energy dissipation in bone," K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz, Nat. Mater. 6, 454 (2007). https://doi.org/10.1038/nmat1911