オックスフォード・インストゥルメンツツの一部
拡張

磁気・データストレージ研究のためのAFM

垂直磁場を印加して取得した磁気スキルミオンのイメージ。磁気力顕微鏡 (MFM, magnetic force microscopy) を使用。

磁気力顕微鏡(MFM)は、原子間力顕微鏡における重要な進歩であり、サブミクロンサイズの磁気ドメインの研究分野を開拓しました。磁気データストレージ業界では特に、磁気媒体・デバイスのイメージングにおいてMFMの中心的な役割が見出されており、磁気的に記録されたビットの分析においても、またそれらを読み書きするトランデューサ―の性能においても、その役割は変わりません。MFMは、ナノ粒子・ナノワイヤーからフェリチン(鉄結合性タンパク質)まで、磁性材料や複合材料の基礎研究にも使用されています。最近MFMは、圧電応答顕微鏡(PFM)と連携して、磁気電気結合を示すマルチフェロイック複合材料の特性評価を行うために使用されています。また、磁歪材料と圧電材料の両方からなるこれらの複合材料は、磁場印加モジュール(VFM)を使用して印加された面内磁場下でPFMを操作することで特性評価が可能となります。これらの新規磁性材料に関する研究は、「高密度データ記憶媒体」、「コンピューティング用の高速・低消費電力スピントロニクスデバイス」、および「デュアル電界方式・磁場方式の可変信号処理デバイスの新たな分野」を探ることが駆動力となっています。

AFMに関する技術的なお問い合わせ
  • 磁気力顕微鏡 (MFM; Magnetic force microscopy)
  • 磁場印加モジュール (VFM; Variable Field Module)
  • 圧電応答顕微鏡 (PFM; Piezoelectric Force Microscopy)
  • バンド励起 (BE; Band Excitation)
  • データストレージ材料
  • 読み取りヘッド用の磁気抵抗材料
  • マルチステートメモリデバイス用のマルチフェロイック複合材料
  • スピントロニクスデバイス、スピントランジスタ、量子計算
  • ソリッド・ステート・トランスフォーマー
  • ジャイレータ
  • 高感度磁気および電流センサー
  • 電磁アクチュエータ
  • 新規信号処理デバイス:共振器、フィルタ、移相器、遅延線、減衰器、および小型アンテナ
  • 高性能マイクロ波およびミリ波共振器

下のリストより技術資料(英文)のダウンロードをご利用いただけます。
日本語版をご希望の場合にはこちらからご連絡ください。

"Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing," J. C. Gartside, D. M. Arroo, D. M. Burn, V. L. Bemmer, A. Moskalenko, L. F. Cohen, and W. R. Branford, Nat. Nanotechnol. 13, 53 (2018). https://doi.org/10.1038/s41565-017-0002-1

"Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal," F. Moro, M. A. Bhuiyan, Z. R. Kudrynskyi, R. Puttock, O. Kazakova, O. Makarovsky, M. W. Fay, C. Parmenter, Z. D. Kovalyuk, A. J. Fielding, M. Kern, J. van Slageren, and A. Patanè, Adv. Sci. 5, 1800257 (2018). https://doi.org/10.1002/advs.201800257

"Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite," M. H. Abdellatif, C. Innocenti, I. Liakos, A. Scarpellini, S. Marras, and M. Salerno, J. Magn. Magn. Mater. 424, 402 (2017). https://doi.org/10.1016/j.jmmm.2016.10.110

"Direct visualization of magnetic‐field‐induced magnetoelectric switching in multiferroic aurivillius phase thin films," A. Faraz, T. Maity, M. Schmidt, N. Deepak, S. Roy, M. E. Pemble, R. W. Whatmore, and L. Keeney, J. Am. Ceram. Soc. 100, 975 (2017). https://doi.org/10.1111/jace.14597

"Heat accumulation and all-optical switching by domain wall motion in Co/Pd superlattices," F. Hoveyda, E. Hohenstein, and S. Smadici, J. Phys.: Condens. Matter 29, 225801 (2017). https://doi.org/10.1088/1361-648X/aa6c93

"Ferroelectric control of organic/ferromagnetic spinterface," S. Liang, H. Yang, H. Yang, B. Tao, A. Djeffal, M. Chshiev, W. Huang, X. Li, A. Ferri, R. Desfeux, and S. Mangin, Adv. Mater. 28, 10204 (2016). https://doi.org/10.1002/adma.201603638

"Observation of magnetic anomalies in one-step solvothermally synthesized nickel–cobalt ferrite nanoparticles," G. Datt, M. S. Bishwas, M. M. Rajac, and A. C. Abhyankar, Nanoscale 8, 5200 (2016). https://doi.org/10.1039/c5nr06791j

"G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics," L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P. K. Liaw, S. V. Kalinin, and S. Jesse, Appl. Phys. Lett. 108, 193103 (2016). https://doi.org/10.1063/1.4948601

"Magnetoelectric quasi-(0-3) nanocomposite heterostructures," Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J.-M. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.-Q. Chen, and D. Viehland, Nat. Commun. 6, 6680 (2015). https://doi.org/10.1038/ncomms7680

"Patterning magnetic regions in hydrogenated graphene via e‐beam irradiation," W. K. Lee, K. E. Whitener, Jr., J. T. Robinson, and P. E. Sheehan, Adv. Mater. 27, 1774 (2015). https://doi.org/10.1002/adma.201404144

"100-nm-sized magnetic domain reversal by the magneto-electric effect in self-assembled BiFeO3/CoFe2O4 bilayer films," K. Sone, H. Naganuma, M. Ito, T. Miyazaki, T. Nakajima, and S. Okamura, Sci. Rep. 5, 9348 (2015). https://doi.org/10.1038/srep09348

"Design of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction," W. I. Liang, Y. Liu, S. C. Liao, W. C. Wang, H. J. Liu, H. J. Lin, C. T. Chen, C. H. Lai, A. Borisevich, E. Arenholz, J. Li, and Y. H. Chu, J. Mater. Chem. C 2, 811 (2014). https://doi.org/10.1039/c3tc31987c

"Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy," H. Miao, X. Zhou, S. Dong, H. Luo, and F. Li, Nanoscale 6, 8515 (2014). https://doi.org/10.1039/c4nr01910e

"Nanocomposite pattern-mediated magnetic interactions for localized deposition of nanomaterials," D. Fragouli, B. Torre, F. Villafiorita-Monteleone, A. Kostopoulou, G. Nanni, A. Falqui, A. Casu, A. Lappas, R. Cingolani, and A. Athanassiou, ACS Appl. Mater. Interfaces 5, 7253 (2013). https://doi.org/10.1021/am401600f

"Micromagnetic modeling of experimental hysteresis loops for heterogeneous electrodeposited cobalt films," M. P. Seymour, I. Wilding, B. Xu, J. I. Mercer, M. L. Plumer, K. M. Poduska, A. Yethiraj, and J. van Lierop, Appl. Phys. Lett. 102, 072403 (2013). https://doi.org/10.1063/1.4793209

"Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy," G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, Nanoscale 4, 3218 (2012). https://doi.org/10.1039/c2nr00064d

"Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation," K. R. Gadelrab, G. Li, M. Chiesa, and T. Souier, J. Mater. Res. 27, 1573 (2012). https://doi.org/10.1557/jmr.2012.99

"Mutual ferromagnetic-ferroelectric coupling in multiferroic copper-doped ZnO," T. S. Herng, M. F. Wong, D. Qi, J. Yi, A. Kumar, A. Huang, F. C. Kartawidjaja, S. Smadici, P. Abbamonte, C. Sánchez-Hanke, S. Shannigrahi, J. M. Xue, J. Wang, Y. P. Feng, A. Rusydi, K. Zeng, and J. Ding, Adv. Mater. 23, 1635 (2011). https://doi.org/10.1002/adma.201004519

"Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling," S. Xie, F. Ma, Y. Liu, and J. Li, Nanoscale 3, 3152 (2011). https://doi.org/10.1039/c1nr10288e

"Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films," F. Yan, T. J. Zhu, M. O. Lai, and L. Lu, Scripta Mater. 63, 780 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013

"Uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 thin films induced by multiferroic BiFeO3 with striped ferroelectric domains," L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J. Wang, Adv. Mater. 22, 4964 (2010). https://doi.org/10.1002/adma.201001990

"Bimodal magnetic force microscopy: Separation of short and long range forces," J. W. Li, J. P. Cleveland, and R. Proksch, Appl. Phys. Lett. 94, 163118 (2009). https://doi.org/10.1063/1.3126521

"Ion beam sputtered nanostructured semiconductor surfaces as templates for nanomagnet arrays," C. Teichert, J. J. de Miguel, and T. Bobek, J. Phys.: Condens. Matter 21, 224025 (2009). https://doi/org/10.1088/0953-8984/21/22/224025

"Magnetic force microscopy of superparamagnetic nanoparticles," S. Schreiber, M. Savla, D. V. Pelekhov, D. F. Iscru, C. Selcu, P. C. Hammel, and G. Agarwal, Small 4, 270 (2008). https://doi.org/10.1002/smll.200700116

"The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale," S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, Nanotechnology 18, 435503 (2007). https://doi.org/10.1088/0957-4484/18/43/435503