オックスフォード・インストゥルメンツツの一部
拡張

トライボロジー研究のためのAFM

摩擦力は、数種の異なる減摩コーティングに対して、印加荷重(摩擦ループ)の関数として測定されます。

摩擦やその他の散逸過程は、自動車エンジンから人工股関節置換術までにいたるまで、さまざまなアプリケーションにおいて重要な役割を果たしますが、これらの現象の重要な側面はまだよく理解されていません。さらに、トライボロジー挙動は、サンプルサイズが縮小するにつれ、体積に対する表面積の割合が増加するため、劇的に変化する可能性があります。原子間力顕微鏡は、原子スケールからマイクロメートルの長さスケールにおいて、トライボロジーの実験に対して多くの機能を提供します。最近のAFMでは、低ノイズかつ高い力感度により、微小な水平力を測定するこができ、広範囲な荷重を印加できます。また、スキャン速度を上げることにより、速度依存性の研究も可能となります。これらの機能や、高い空間分解能、豊富な環境制御機能、そしてセットアップやデータ分析のための多数のツールにより、原子間力顕微鏡は、ナノトライボロジー研究を推進させるうえで強力な手段となります。

AFMに関する技術的なお問い合わせ
  • 摩擦と摩耗(摩擦力顕微鏡 (FFM; friction force microscopy) および水平力顕微鏡 (LFM; lateral force microscopy))
  • 粘着力(フォースカーブと高速フォースマッピング)
  • 表面粗さとトポグラフィ(タッピングモード)
  • 摩擦電気(電気力顕微鏡 (EFM; electrostatic force microscopy) およびケルビンプローブフォース顕微鏡 (KPFM; Kelvin probe force microscopy))
  • 環境制御(液体・気体、相対湿度、温度)
  • カンチレバー校正ソフトウェア (GetReal)
  • マイクロ/ナノエレクトロメカニカルシステム (MEMS/NEMS)
  • グラフェンと二次元(2D)材料
  • 磁気記憶装置
  • 生体材料(整形外科、化粧品など)
  • 耐摩耗性フィルム
  • 潤滑剤
  • 防食用コーティング

下のリストより技術資料(英文)のダウンロードをご利用いただけます。
日本語版をご希望の場合にはこちらからご連絡ください。

"An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide," X. A. Cao, X. Gan, Y. Peng, Y. Wang, X. Zeng, H. Lang, J. Deng, and K. Zou, Nanoscale 10, 378 (2018). https://doi.org/10.1039/c7nr06471c

"Improvement of load bearing capacity of nanoscale superlow friction by synthesized fluorinated surfactant micelles," J. Li, Z. P. Dou, Y. Liu, J. Luo, and J. X. Xiao, ACS Appl. Nano Mater. 1, 953 (2018). https://doi.org/10.1021/acsanm.7b00367

"Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere," S. W. Liu, H. P. Wang, Q. Xu, T. B. Ma, G. Yu, C. Zhang, D. Geng, Z. Yu, S. Zhang, W. Wang, Y. Z. Hu, H. Wang, and J. Luo, Nat. Commun. 8, 14029 (2017). https://doi.org/10.1038/ncomms14029

"Nanomechanics of pH-responsive, drug-loaded, bilayered polymer grafts,” P. C. Nalam, H.-S. Lee, N. Bhatt, R. W. Carpick, D. M. Eckmann, and R. J. Composto, ACS Appl. Mater. Interfaces 9, 12936 (2017). https://doi.org/10.1021/acsami.6b14116

"A novel approach to decrease friction of graphene," X. Zeng, Y. Peng, and H. Lang, Carbon 118, 233 (2017). https://doi.org/10.1016/j.carbon.2017.03.042

"Static and kinetic friction characteristics of nanowire on different substrates," H.-J. Kim, G. H. Nguyen, D. L. C. Ky, D. K. Tran, K.-J. Jeon, and K.-H. Chung, Appl. Surf. Sci. 379, 452 (2016). https://doi.org/10.1016/j.apsusc.2016.04.097

"Effect of structure on the tribology of ultrathin graphene and graphene oxide films," H. Chen and T. Filleter, Nanotechnology 26, 135702 (2015). https://doi.org/10.1088/0957-4484/26/13/135702

"Interaction between selected MoS2 nanoparticles and ZDDP tribofilms," A. Tomala, B. Vengudusamy, M. Rodríguez Ripoll, A. N. Suarez, M. Remškar, and R. Rosentsveig, Tribol. Lett. 59, 26 (2015). https://doi.org/10.1007/s11249-015-0552-z

"Ionic liquids confined in hydrophilic nanocontacts: Structure and lubricity in the presence of water," R. M. Espinosa-Marzal, A. Arcifa, A. Rossi, and N. D. Spencer, J. Phys. Chem. C 118, 6491 (2014). https://doi.org/10.1021/jp5000123

"Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper,” A. J. Marsden, M. Phillips, and N. R. Wilson, Nanotechnology 24, 255704 (2013). https://doi.org/10.1088/0957-4484/24/25/255704

"Covalently attached organic monolayers onto silicon carbide from 1-alkynes: molecular structure and tribological properties," S. P. Pujari, L. Scheres, T. Weidner, J. E. Baio, M. A. Cohen Stuart, C. J. van Rijn, and H. Zuilhof, Langmuir 29, 4019 (2013). https://doi.org/10.1021/la400040e

"In situ quantitative study of nanoscale triboelectrification and patterning," Y. S. Zhou, Y. Liu, G. Zhu, Z. H. Lin, C. Pan, Q. Jing, and Z. L. Wang, Nano Lett. 13, 2771 (2013). https://doi.org/10.1021/nl401006x

"Lubrication with oil-compatible polymer brushes," R. M. Bielecki, E. M. Benetti, D. Kumar, and N. D. Spencer, Tribol. Lett. 45, 477 (2012). https://doi.org/10.1007/s11249-011-9903-6

"Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage," S. M. T. Chan, C. P. Neu, G. Duraine, K. Komvopoulos, and A. H. Reddi, Osteoarthr. Cartilage 18, 956 (2010). https://doi.org/10.1016/j.joca.2010.03.012

"Local nanoscale heating modulates single-asperity friction," C. Greiner, J. R. Felts, Z. Dai, W. P. King, and R. W. Carpick, Nano Lett. 10, 4640 (2010). https://doi.org/10.1021/nl102809k

"Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic surfaces," D. P. Chang, N. I. Abu-Lail, J. M. Coles, F. Guilak, G. D. Jay, and S. Zauscher, Soft Matter 5, 3438 (2009). https://doi.org/10.1039/b907155e

"In situ friction measurement on murine cartilage by atomic force microscopy," J. M. Coles, J. J. Blum, G. D. Jay, E. M. Darling, F. Guilak, and S. Zauscher, J. Biomech. 41, 541 (2008). https://doi.org/10.1016/j.jbiomech.2007.10.013

"Diamond and hard carbon films for microelectromechanical systems (MEMS)—a nanotribological study," I. S. Forbes and J. I. Wilson, Thin Solid Films 420, 508 (2002). https://doi.org/10.1016/S0040-6090(02)00854-4