オックスフォード・インストゥルメンツツの一部
拡張

食品科学研究のためのAFM

チョコレートのイメージ。原子間力顕微鏡 (AFM) を用いて取得。

原子間力顕微鏡 (AFM, atomic force microscopy) は、食品科学分野においてユニークなデータを提供できます。 研究では、自然な状態に近い条件(例えば、ゼラチン、カゼイン、キサンチン多糖類、ペクチン、アミロース、および大豆タンパク質)において分子構造が調査されています。 多糖ゲル、デンプン、ガム、チョコレート、ミルクミセルなど、より大きな構造体も研究されています。

AFMに関する技術的なお問い合わせ

AFMは、小さな分子および、やや大きな構造体の高分解能イメージを提供することができます。食品科学では、チョコレートなどの食品構造を理解することは、味の観点から(材料組成、添加物、および製造工程の変動要因の関数として)品質を向上させるのに有用です。AFMが有する、ナノスケールでナノメカニカル特性を測定できるユニークな機能は、混合物中の異なる材料を区別するのに役立ちます。 サンプルは、「大気中」、「湿度制御」、「液中」の環境で測定できます。 さらに、サンプル全体を加熱・冷却することで、温度による影響を調査でき、また、局所熱分析を用いてナノスケールでの相転移を調べることも可能です。

  • 食品の構造や機能性
  • 食品生体高分子(タンパク質、炭水化物重合体など)の物理化学的特性
  • 食品ナノテクノロジー

下のリストより技術資料(英文)のダウンロードをご利用いただけます。
日本語版をご希望の場合にはこちらからご連絡ください。

"AFM-based local thermal analysis is a suitable tool to characterize the impact of different grinding techniques on sucrose surface properties," D. Middendorf, U. Bindrich, P. Mischnick, K. Franke, and V. Heinz, J. Food Eng. 235, 50 (2018). https://doi.org/10.1016/j.jfoodeng.2018.04.021

"Topographical and nanomechanical characterization of casein nanogel particles using atomic force microscopy," A. Bahri, M. Martin, C. Gergely, S. Marchesseau, and D. Chevalier-Lucia, Food Hydrocoll. 83, 53 (2018). https://doi.org/10.1016/j.foodhyd.2018.03.029

"Simulated gastrointestinal digestion of nisin and interaction between nisin and bile," R. Gough, P. M. O'Connor, M. C. Rea, B. Gómez-Sala, S. Miao, C. Hill, and A. Brodkorb, LWT - Food Sci. Technol. 86, 530 (2017). https://doi.org/10.1016/j.lwt.2017.08.031

"Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization," B. Bideau, J. Bras, N. Adoui, E. Loranger, and C. Daneault, Food Packaging and Shelf Life 12, 1 (2017). https://doi.org/10.1016/j.fpsl.2017.01.007

"Modification of pea protein isolate for ultrasonic encapsulation of functional liquids," Q. Ye, M. Biviano, S. Mettu, M. Zhou, R. Dagastine, and M. Ashokkumar, RSC Adv. 6, 106130 (2016). https://doi.org/10.1039/c6ra17585f

"Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract," S. U. Kadam, S. Pankaj, B. K. Tiwari, P. Cullen, and C. P. O'Donnell, Food Packaging and Shelf Life 6, 68 (2015). https://doi.org/10.1016/j.fpsl.2015.09.003

"AFM approach to study the function of PGPR's emulsifying properties in cocoa butter based suspensions," D. Middendorf, A. Juadjur, U. Bindrich, and P. Mischnick, Food Struct. 4, 16 (2015). https://doi.org/doi:10.1016/j.foostr.2014.11.003

"AFM study of casein micelles cross-linked by genipin: Effects of acid pH and citrate," N. N. Silva, A. Bahri, F. Guyomarc'h, E. Beaucher, and F. Gaucheron, Dairy Sci. Technol. 95, 75 (2015). https://doi.org/10.1007/s13594-014-0199-9

"Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin," C. V. L. Giosafatto, P. D. Pierro, P. Gunning, A. Mackie, R. Porta, and L. Mariniello, Carbohydr. Polym. 106, 200 (2014). https://doi.org/10.1016/j.carbpol.2014.02.015

"Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma," S. K. Pankaj, C. Bueno-Ferrer, N. N. Misra, L. O'Neill, A. Jim énez, P. Bourke, and P. J. Cullen, Innov. Food Sci. Emerg. Technol. 21, 107 (2014). https://doi.org/10.1016/j.ifset.2013.10.00

"Mining the 'glycocode'—exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy," A. P. Gunning, A. R. Kirby, C. Fuell, C. Pin, L. E. Tailford, and N. Juge, FASEB J. 27, 2342 (2013). https://doi.org/10.1096/fj.12-221416

"β-casein–phospholipid monolayers as model systems to understand lipid–protein interactions in the milk fat globule membrane," S. Gallier, D. Gragson, R. Jiménez-Flores, and D. W. Everett, Int. Dairy J. 22, 58 (2012). https://doi.org/10.1016/j.idairyj.2011.08.007

"AFM imaging of milk casein micelles: Evidence for structural rearrangement upon acidification," M. Ouanezar, F. Guyomarc'h, and A. Bouchoux, Langmuir 28, 4915 (2012). https://doi.org/10.1021/la3001448

"CsgA production by Escherichia coli O157:H7 alters attachment to abiotic surfaces in some growth environments," R. M. Goulter-Thorsen, E. Taran, I. R. Gentle, K. S. Gobius, and G. A. Dykes, Appl. Environ. Microbiol. 77, 7339 (2011). https://doi.org/10.1128/aem.00277-11

"Atomic force spectroscopy of interactions between oil droplets in emulsions," A. Gromer and A. P. Gunning, Microscopy and Analysis 25, 9 (2011). link to magazine

"Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices," S. B. Doherty, L. Wang, R. P. Ross, C. Stanton, G. F. Fitzgerald, and A. Brodkorb, J. Microbiol. Methods 82, 301 (2010). https://doi.org/10.1016/j.mimet.2010.07.003

"Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid," S. Madrigal-Carballo, S. Lim, G. Rodriguez, A. O. Vila, C. G. Krueger, S. Gunasekaran, and J. D. Reed, J. Funct. Foods 2, 99 (2010). https://doi.org/10.1016/j.jff.2010.01.002

"The interaction between water-insoluble pentosan and gluten of the whole wheat," F. Ma, Z. Wang, S. Xu, and R. Lu, Eur. Food Res. Technol. 229, 231 (2009). https://doi.org/10.1007/s00217-009-1041-0

"Evaluation of two food grade proliposomes to encapsulate an extract of a commercial enzyme preparation by microfluidization," A. B. Nongonierma, M. Abrlova, M. A. Fenelon, and K. N. Kilcawley, J. Agric. Food Chem. 57, 3291 (2009). https://doi.org/10.1021/jf803367b https://doi.org/10.1021/jf803367

"Effect of hydrophilic and lipophilic compounds on zein microstructures," Q. Wang, L. Yin, and G. W. Padua, Food Biophys. 3, 174 (2008). https://doi.org/10.1007/s11483-008-9080-9

"Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy," E. Jöbstl, J. R. Howse, J. P. A. Fairclough, and M. P. Williamson, J. Agric. Food Chem. 54, 4077 (2006). https://doi.org/10.1021/jf053259f